Understanding Student Sentiment in Teacher Evaluations Using Large Language Models

Victor Saquicela, Kenneth Palacio-Baus, Jorge Maldonado-Mahauad, Mauricio Espinoza-Mejía

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This study focuses on the inherent complexity of teaching evaluation analysis and understanding at the university level. We propose an approach that merges traditional evaluation methods with advanced natural language processing (NLP) techniques, in particular, sentiment analysis and Latent Dirichlet Allocation (LDA). We seek to improve the interpretation of comments given by students, overcoming the challenges associated with vast amounts of unstructured data. The innovative use of NLP techniques in the field of teaching evaluation allows not only for positive and negative opinion categorization but also, to identify latent thematic patterns which may further provide a deeper understanding of student perceptions and biases.

Idioma originalInglés
Título de la publicación alojadaETCM 2024 - 8th Ecuador Technical Chapters Meeting
EditoresDavid Rivas-Lalaleo, Soraya Lucia Sinche Maita
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350391589
DOI
EstadoPublicada - 2024
Evento8th IEEE Ecuador Technical Chapters Meeting, ETCM 2024 - Cuenca, Ecuador
Duración: 15 oct. 202418 oct. 2024

Serie de la publicación

NombreETCM 2024 - 8th Ecuador Technical Chapters Meeting

Conferencia

Conferencia8th IEEE Ecuador Technical Chapters Meeting, ETCM 2024
País/TerritorioEcuador
CiudadCuenca
Período15/10/2418/10/24

Huella

Profundice en los temas de investigación de 'Understanding Student Sentiment in Teacher Evaluations Using Large Language Models'. En conjunto forman una huella única.

Citar esto