Support Vector Regression to Downscaling Climate Big Data: An Application for Precipitation and Temperature Future Projection Assessment

Stalin Jimenez, Alex Aviles, Luciano Galán, Andrés Flores, Carlos Matovelle, Cristian Vintimilla

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

The techniques for downscaling climatic variables are essential to support tools for water resources planning and management in a climate change context in the entire world. Support vector machines (SVM) through regression approach (SVR), constitute an artificial intelligence method to downscaling climatic variables. Since that statistical downscaling based on regression methodologies is susceptible to the predictor variables, the aim of this study was exploring a big database of predictor variables to achieve the best performance of a statistical downscaling model using SVR to predict precipitation and temperature future projections. Data from regional climate models of Ecuador and information of three meteorological stations was used to apply this approach in the Tomebamba river sub-basin, located in southern Ecuadorian Andean region. The results show that the downscaling model has a better performance with the climatic averages. The precipitation extremes do not estimate in a good manner, but the model achieves an effective behavior with the temperature extremes values. These results could serve to improve water balance projections in the future for formulating suitable measures for climate change decision-making.

Idioma originalInglés
Título de la publicación alojadaInformation and Communication Technologies of Ecuador, TIC.EC 2019
EditoresEfraín Fonseca C, Germania Rodríguez Morales, Marcos Orellana Cordero, Miguel Botto-Tobar, Esteban Crespo Martínez, Andrés Patiño León
EditorialSpringer
Páginas182-193
Número de páginas12
ISBN (versión impresa)9783030357399
DOI
EstadoPublicada - 2020
Evento6th Conference on Information and Communication Technologies, TIC.EC 2019 - Cuenca, Ecuador
Duración: 27 nov. 201929 nov. 2019

Serie de la publicación

NombreAdvances in Intelligent Systems and Computing
Volumen1099
ISSN (versión impresa)2194-5357
ISSN (versión digital)2194-5365

Conferencia

Conferencia6th Conference on Information and Communication Technologies, TIC.EC 2019
País/TerritorioEcuador
CiudadCuenca
Período27/11/1929/11/19

Huella

Profundice en los temas de investigación de 'Support Vector Regression to Downscaling Climate Big Data: An Application for Precipitation and Temperature Future Projection Assessment'. En conjunto forman una huella única.

Citar esto