SUPERVISED CLASSIFICATION PROCESSES for the CHARACTERIZATION of HERITAGE ELEMENTS, CASE STUDY: CUENCA-ECUADOR

J. C. Briones, V. Heras, C. Abril, E. Sinchi

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The proper control of built heritage entails many challenges related to the complexity of heritage elements and the extent of the area to be managed, for which the available resources must be efficiently used. In this scenario, the preventive conservation approach, based on the concept that prevent is better than cure, emerges as a strategy to avoid the progressive and imminent loss of monuments and heritage sites. Regular monitoring appears as a key tool to identify timely changes in heritage assets. This research demonstrates that the supervised learning model (Support Vector Machines - SVM) is an ideal tool that supports the monitoring process detecting visible elements in aerial images such as roofs structures, vegetation and pavements. The linear, gaussian and polynomial kernel functions were tested; the lineal function provided better results over the other functions. It is important to mention that due to the high level of segmentation generated by the classification procedure, it was necessary to apply a generalization process through opening a mathematical morphological operation, which simplified the over classification for the monitored elements.

Idioma originalInglés
Páginas (desde-hasta)39-45
Número de páginas7
PublicaciónISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Volumen4
N.º2W2
DOI
EstadoPublicada - 16 ago. 2017
Publicado de forma externa
Evento26th International CIPA Symposium on Digital Workflows for Heritage Conservation 2017 - Ottawa, Canadá
Duración: 28 ago. 20171 sep. 2017

Huella

Profundice en los temas de investigación de 'SUPERVISED CLASSIFICATION PROCESSES for the CHARACTERIZATION of HERITAGE ELEMENTS, CASE STUDY: CUENCA-ECUADOR'. En conjunto forman una huella única.

Citar esto