Spatially-Varying Sharpness Map Estimation Based on the Quotient of Spectral Bands

Juan Andrade, Pavan Turaga, Andreas Spanias

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Natural images suffer from defocus blur due to the presence of objects at different depths from the camera. Automatic estimation of spatially-varying sharpness has several applications including depth estimation, image quality assessment, information retrieval, image restoration among others. In this paper, we propose a sharpness metric based on the quotient of high- to low-frequency bands of the log-spectrum of the image gradients. Using the proposed sharpness metric, we obtain a descriptive dense sharpness map. We also propose a simple yet effective method to segment out-of-focus regions using a global threshold which is defined using weak textured regions present in the input image. Results over two publicly available databases show that the proposed method provides competitive performance when compared with state-of-the-art methods.

Idioma originalInglés
Título de la publicación alojada2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings
EditorialIEEE Computer Society
Páginas4020-4024
Número de páginas5
ISBN (versión digital)9781538662496
DOI
EstadoPublicada - sep. 2019
Publicado de forma externa
Evento26th IEEE International Conference on Image Processing, ICIP 2019 - Taipei, Taiwán
Duración: 22 sep. 201925 sep. 2019

Serie de la publicación

NombreProceedings - International Conference on Image Processing, ICIP
Volumen2019-September
ISSN (versión impresa)1522-4880

Conferencia

Conferencia26th IEEE International Conference on Image Processing, ICIP 2019
País/TerritorioTaiwán
CiudadTaipei
Período22/09/1925/09/19

Huella

Profundice en los temas de investigación de 'Spatially-Varying Sharpness Map Estimation Based on the Quotient of Spectral Bands'. En conjunto forman una huella única.

Citar esto