Spatially targeted afforestation to minimize sediment loss from a catchment: An efficient hill climbing method considering spatial interaction

Grethell Castillo Reyes (Primer Autor), René Gustavo Estrella Maldonado, Dirk Roose, Floris Abrams, Gerdys Jiménez Moya, Jos Van Orshoven (Último Autor), Grethell Castillo Reyes (Autor de Correspondencia)

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Based on soil erosion and sediment transport processes, CAMF (Cellular Automata-based heuristic for Minimizing Flow) selects sites for afforestation to minimize sediment influx at a catchment's outlet. CAMF uses a raster representation of the catchment and a steepest ascent hill-climbing optimization heuristic, safeguarding spatial interaction. Its execution time can be prohibitively long for large data-sets. Parallelization results in a speedup of 20 to 24 on 28 cores. We present variants of the optimization method to reduce the number and cost of the iterations. We present a tuning algorithm for the meta-parameters of these variants. The results obtained for two contrasting catchments illustrate that the accelerations reduce the cost by a factor larger than 100, with negligible effect on the afforested cells and magnitude of the sediment reduction. The results indicate that higher levels of spatial interaction have a stronger impact on the accuracy of the results and/or the execution time.
Idioma originalInglés
Número de artículo106000
Páginas (desde-hasta)1-18
Número de páginas18
PublicaciónEnvironmental Modelling and Software
Volumen176
DOI
EstadoPublicada - may. 2024

Palabras clave

  • Spatial interaction
  • Accelerated CAMF software
  • Afforestation
  • Hill climbing heuristic
  • Sediment loss
  • Spatial optimization

Huella

Profundice en los temas de investigación de 'Spatially targeted afforestation to minimize sediment loss from a catchment: An efficient hill climbing method considering spatial interaction'. En conjunto forman una huella única.

Citar esto