RUTGe: Realistic Urban Traffic Generator for Urban Environments Using Deep Reinforcement Learning and SUMO Simulator

Alberto Bazán Guillén, Pablo A. Barbecho Bautista, Mónica Aguilar Igartua

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

1 Cita (Scopus)

Resumen

We are witnessing a profound shift in societal and political attitudes, driven by the visible consequences of climate change in urban environments. Urban planners, public transport providers, and traffic managers are urgently reimagining cities to promote sustainable mobility and expand green spaces for pedestrians, bicycles, and scooters. To design more sustainable cities, urban planners require realistic simulation tools to optimize mobility, identify location for car chargers, convert streets to pedestrian zones, and evaluate the impact of alternative configurations. However, realistic traffic profiles are essential to produce meaningful simulation results. Addressing this need, we propose a traffic generator based on deep reinforcement learning integrated with the SUMO simulator. This tool learns to generate an instantaneous number of vehicles throughout the day, aligning closely with the target profiles observed at the traffic monitoring stations. Our approach generates accurate 24-hour traffic patterns for any city using minimal statistical data, achieving higher accuracy compared to existing alternatives. In particular, our proposal demonstrates a highly accurate 24-hour traffic adjustment, with the generated traffic deviating only by about 5% from the real target traffic. This performance significantly exceeds that of current SUMO tools like RouteSampler, which struggle to accurately follow the total daily traffic curve, especially during peak hours when severe traffic congestion occurs.

Idioma originalInglés
Título de la publicación alojadaInternational Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings
EditoresJeroen Ploeg, Oleg Gusikhin, Karsten Berns
EditorialScience and Technology Publications, Lda
Páginas557-564
Número de páginas8
ISBN (versión digital)9789897587450
ISBN (versión impresa)9789897587450
DOI
EstadoPublicada - 2025
Evento11th International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS 2025 - Porto, Portugal
Duración: 2 abr. 20254 abr. 2025

Serie de la publicación

NombreInternational Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings
ISSN (versión digital)2184-495X

Conferencia

Conferencia11th International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS 2025
País/TerritorioPortugal
CiudadPorto
Período2/04/254/04/25

Huella

Profundice en los temas de investigación de 'RUTGe: Realistic Urban Traffic Generator for Urban Environments Using Deep Reinforcement Learning and SUMO Simulator'. En conjunto forman una huella única.

Citar esto