RR Stress Test Time Series classification using Neural networks

Wilson X. Jaramillo, Fabian Astudillo-Salinas, Lizandro Solano-Quinde, Kenneth Palacio-Baus, Sara Wong

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The RR time series, obtained from the R waves of the ECG, are a representation of the heart rate. This work presents the use of an artificial neural network (ANN) to classify RR time series from an ECG stress test. Four classes of RR time series were defined: very good, good, low quality and useless. We use a preprocessing stage to split input data vectors into NW data windows for which we compute the standard deviation of the RR interval (SDRR) to generate the input features vector of a multilayer perceptron network architecture. We introduce a saturation value S in order to limit SDRR values. 520 RR time series from 65 records of ECG stress test were analyzed. Experiments were performed to explore the influence of parameters S and NW. 40 subjects records are used in training and the remaining for testing. The classification results show a matching correlation ratio above 71%, which is higher than the correlation between two human experts. The main contribution of this work constitutes the preprocessing stage proposed for a stress test RR time series schema and an acceptable performance which does not depend on parameter NW.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2018 IEEE 25th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781538654903
DOI
EstadoPublicada - 6 nov. 2018
Evento25th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018 - Lima, Perú
Duración: 8 ago. 201810 ago. 2018

Serie de la publicación

NombreProceedings of the 2018 IEEE 25th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018

Conferencia

Conferencia25th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018
País/TerritorioPerú
CiudadLima
Período8/08/1810/08/18

Huella

Profundice en los temas de investigación de 'RR Stress Test Time Series classification using Neural networks'. En conjunto forman una huella única.

Citar esto