Realistic Urban Traffic Generator Using Decentralized Federated Learning for the SUMO Simulator

Alberto Bazán Guillén (Primer Autor), Carlos Beis Penedo, Diego Cajaraville Aboy, Pablo Barbecho Bautista, Rebeca P. Díaz Redondo, Luis Javier De la Cruz Llopis, Ana Fernández Vilas, Mónica Aguilar Igartua, Manuel Fernández Vilas, Alberto Bazán Guillén (Autor de Correspondencia)

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Realistic urban traffic simulation is essential for sustainable urban planning and the development of intelligent transportation systems. However, generating high-fidelity, time-varying traffic profiles that accurately reflect real-world conditions, especially in large-scale scenarios, remains a major challenge. Existing methods often suffer from limitations in accuracy, scalability, or raise privacy concerns due to centralized data processing. This work introduces DesRUTGe (Decentralized Realistic Urban Traffic Generator), a novel framework that integrates Deep Reinforcement Learning (DRL) agents with the SUMO simulator to generate realistic 24-hour traffic patterns. A key innovation of DesRUTGe is its use of Decentralized Federated Learning (DFL), wherein each traffic detector and its corresponding urban zone function as an independent learning node. These nodes train local DRL models using minimal historical data and collaboratively refine their performance by exchanging model parameters with selected peers (e.g., geographically adjacent zones), without requiring a central coordinator. Evaluated using real-world data from the city of Barcelona, DesRUTGe outperforms standard SUMO-based tools such as RouteSampler, as well as other centralized learning approaches, by delivering more accurate and privacy-preserving traffic pattern generation.
Idioma originalInglés
Páginas (desde-hasta)6627-6649
Número de páginas23
PublicaciónIEEE Open Journal of the Communications Society
Volumen6
DOI
EstadoPublicada - 2025

Palabras clave

  • Decentralized federated learning
  • Reinforcement learning
  • Smart cities
  • SUMO traffic generation

Huella

Profundice en los temas de investigación de 'Realistic Urban Traffic Generator Using Decentralized Federated Learning for the SUMO Simulator'. En conjunto forman una huella única.

Citar esto