Real-time hybrid simulation for structural control performance assessment

Juan E. Carrion, B. F. Spencer, Brian M. Phillips

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

84 Citas (Scopus)

Resumen

Real-time hybrid simulation is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with rate-dependent components. Real-time hybrid simulation is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for actuator dynamics is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid simulation in which compensation for actuator dynamics is implemented using a model-based feedforward compensator. The method is used to evaluate the response of a semi-active control of a structure employing an MR damper. Experimental results show good agreement with the predicted responses, demonstrating the effectiveness of the method for structural control performance assessment.

Idioma originalInglés
Páginas (desde-hasta)481-492
Número de páginas12
PublicaciónEarthquake Engineering and Engineering Vibration
Volumen8
N.º4
DOI
EstadoPublicada - dic. 2009
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Real-time hybrid simulation for structural control performance assessment'. En conjunto forman una huella única.

Citar esto