Predictive Energy Storage Management with Redox Flow Batteries in Demand-Driven Microgrids

Dario Benavides, Paul Arévalo-Cordero, Danny Ochoa-Correa, David Torres, Alberto Ríos

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Accurate demand forecasting contributes to improved energy efficiency and the development of short-term strategies. Predictive management of energy storage using redox flow batteries is presented as a robust solution for optimizing the operation of microgrids from the demand side. This study proposes an intelligent architecture that integrates demand forecasting models based on artificial neural networks and active management strategies based on the instantaneous production of renewable sources within the microgrid. The solution is supported by a real-time monitoring platform capable of analyzing data streams using continuous evaluation algorithms, enabling dynamic operational adjustments and active methods for predicting the storage system’s state of charge. The model’s effectiveness is validated using performance indicators such as RMSE, MAPE, and MSE, applied to experimental data obtained in a specialized microgrid laboratory. The results also demonstrate substantial improvements in energy planning and system operational efficiency, positioning this proposal as a viable strategy for distributed and sustainable environments in modern electricity systems.

Idioma originalInglés
Número de artículo8915
Páginas (desde-hasta)8915
PublicaciónSustainability (Switzerland)
Volumen17
N.º19
DOI
EstadoPublicada - 8 oct. 2025

Huella

Profundice en los temas de investigación de 'Predictive Energy Storage Management with Redox Flow Batteries in Demand-Driven Microgrids'. En conjunto forman una huella única.

Citar esto