Predicting Ozone Pollution in Urban Areas Using Machine Learning and Quantile Regression Models

Fernando Cueva, Victor Saquicela, Juan Sarmiento, Fanny Cabrera

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Ozone is the most harmful secondary pollutant in terms of negative effects on climate change and human health. Predicting ozone emission levels has therefore gained importance within the field of environmental management. This study, performed in the Andean city of Cuenca, Ecuador, compares the performance of two methodologies currently used for this task and based on machine learning and quantile regression techniques. These techniques were applied using cross-sectional data to predict the ozone concentration per city block during the year 2018. Our results reveal that ozone concentration is significantly influenced by nitrogen dioxide, sedimentary particles, sulfur dioxide, traffic, and spatial features. We use the mean square error, the coefficient of determination, and the quantile loss as evaluation metrics for the performance of the ozone prediction models, employing a cross-validation scheme with a fold. Our work shows that the random forest technique outperforms gradient boosting prediction, neural network, and quantile regression methods.

Idioma originalInglés
Título de la publicación alojadaInformation and Communication Technologies - 9th Conference of Ecuador, TICEC 2021, Proceedings
EditoresJuan Pablo Salgado Guerrero, Janneth Chicaiza Espinosa, Mariela Cerrada Lozada, Santiago Berrezueta-Guzman
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas281-296
Número de páginas16
ISBN (versión impresa)9783030899400
DOI
EstadoPublicada - 2021
Evento9th Conference on Information and Communication Technologies of Ecuador, TICEC 2021 - Virtual, Online
Duración: 24 nov. 202126 nov. 2021

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1456 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia9th Conference on Information and Communication Technologies of Ecuador, TICEC 2021
CiudadVirtual, Online
Período24/11/2126/11/21

Huella

Profundice en los temas de investigación de 'Predicting Ozone Pollution in Urban Areas Using Machine Learning and Quantile Regression Models'. En conjunto forman una huella única.

Citar esto