TY - JOUR
T1 - Precipitation characteristics at two locations in the tropical andes by means of vertically pointing micro-rain radar observations
AU - Seidel, Jochen
AU - Trachte, Katja
AU - Orellana-Alvear, Johanna
AU - Figueroa, Rafael
AU - Célleri, Rolando
AU - Bendix, Jörg
AU - Fernandez, Ciro
AU - Huggel, Christian
AU - Seidel, Jochen
AU - Seidel, Jochen
N1 - Publisher Copyright:
© 2019 by the authors.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - In remote areas with steep topography, such as the Tropical Andes, reliable precipitation data with a high temporal resolution are scarce. Therefore, studies focusing on the diurnal properties of precipitation are hampered. In this paper, we investigated two years of data from Micro-Rain Radars (MRR) in Cuenca, Ecuador, and Huaraz, Peru, from February 2017 to January 2019. This data allowed for a detailed study on the temporal precipitation characteristics, such as event occurrences and durations at these two locations. Our results showed that the majority of precipitation events had durations of less than 3 h. In Huaraz, precipitation has a distinct annual and diurnal cycle where precipitation in the rainy season occurred predominantly in the afternoon. These annual and diurnal cycles were less pronounced at the site in Cuenca, especially due to increased nocturnal precipitation events compared to Huaraz. Furthermore, we used a fuzzy logic classification of fall velocities and rainfall intensities to distinguish different precipitation types. This classification showed that nightly precipitation at both locations was predominantly stratiform, whereas (thermally induced) convection occurred almost exclusively during the daytime hours.
AB - In remote areas with steep topography, such as the Tropical Andes, reliable precipitation data with a high temporal resolution are scarce. Therefore, studies focusing on the diurnal properties of precipitation are hampered. In this paper, we investigated two years of data from Micro-Rain Radars (MRR) in Cuenca, Ecuador, and Huaraz, Peru, from February 2017 to January 2019. This data allowed for a detailed study on the temporal precipitation characteristics, such as event occurrences and durations at these two locations. Our results showed that the majority of precipitation events had durations of less than 3 h. In Huaraz, precipitation has a distinct annual and diurnal cycle where precipitation in the rainy season occurred predominantly in the afternoon. These annual and diurnal cycles were less pronounced at the site in Cuenca, especially due to increased nocturnal precipitation events compared to Huaraz. Furthermore, we used a fuzzy logic classification of fall velocities and rainfall intensities to distinguish different precipitation types. This classification showed that nightly precipitation at both locations was predominantly stratiform, whereas (thermally induced) convection occurred almost exclusively during the daytime hours.
KW - Diurnal precipitation characteristics
KW - Micro-rain radar
KW - Tropical Andes
UR - https://www.scopus.com/pages/publications/85077901648
U2 - 10.3390/rs11242985
DO - 10.3390/rs11242985
M3 - Artículo
AN - SCOPUS:85077901648
SN - 2072-4292
VL - 11
JO - Remote Sensing
JF - Remote Sensing
IS - 24
M1 - 2985
ER -