Optimizing Microgrid Operation: Integration of Emerging Technologies and Artificial Intelligence for Energy Efficiency

Willian Paul Arévalo Cordero (Primer Autor), Danny Vinicio Ochoa Correa, Edisson Andrés Villa Ávila (Último Autor)

Producción científica: Contribución a una revistaArtículo de revisiónrevisión exhaustiva

27 Citas (Scopus)

Resumen

Microgrids have emerged as a key element in the transition towards sustainable and resilient energy systems by integrating renewable sources and enabling decentralized energy management. This systematic review, conducted using the PRISMA methodology, analyzed 74 peer-reviewed articles from a total of 4205 studies published between 2014 and 2024. This review examines critical areas such as reinforcement learning, multi-agent systems, predictive modeling, energy storage, and optimization algorithms—essential for improving microgrid efficiency and reliability. Emerging technologies like artificial intelligence (AI), the Internet of Things, and flexible power electronics are highlighted for enhancing energy management and operational performance. However, challenges persist in integrating AI into complex, real-time control systems and managing distributed energy resources. This review also identifies key research opportunities to enhance microgrid scalability, resilience, and efficiency, reaffirming their vital role in sustainable energy solutions.
Idioma originalInglés
Número de artículo3754
Páginas (desde-hasta)1-25
Número de páginas25
PublicaciónElectronics (Switzerland)
Volumen13
N.º18
DOI
EstadoPublicada - sep. 2024

Palabras clave

  • Artificial intelligence
  • Energy management
  • Microgrid operation
  • PRISMA methodology

Huella

Profundice en los temas de investigación de 'Optimizing Microgrid Operation: Integration of Emerging Technologies and Artificial Intelligence for Energy Efficiency'. En conjunto forman una huella única.

Citar esto