Intelligent occupancy-driven thermostat by dynamic user profiling

Yannick De Bock, Andres Auquilla, Karel Kellens, Ann Nowe, Joost R. Duflou, Yannick De Bock (Primer Autor), Yannick De Bock (Autor de correspondencia)

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Matching system functionality and user needs by learning from user behaviour enables a significant reduction in energy consumption. Habits and routine behaviour are exploited and captured in user profiles to automatically create customized heating schedules. However, over time the user conduct can change either gradually or abruptly and old occupancy patterns could become obsolete. Hence, a self-learning system should be able to cope with these changes and adapt the identified user profiles accordingly. An approach to track changing behaviour and update the corresponding user profiles, and hence heating schedules, is presented. The proposed strategy is evaluated by comparing prediction accuracy and potential energy savings to the case where learning is static and to incremental learning strategies. The results are illustrated by means of a real-life dataset of a single-user office.

Idioma originalInglés
Título de la publicación alojada2016 Electronics Goes Green 2016+, EGG 2016
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781509052080
DOI
EstadoPublicada - 23 ene. 2017
Evento2016 Electronics Goes Green 2016+, EGG 2016 - Berlin, Alemania
Duración: 6 sep. 20169 sep. 2016

Serie de la publicación

Nombre2016 Electronics Goes Green 2016+, EGG 2016

Conferencia

Conferencia2016 Electronics Goes Green 2016+, EGG 2016
País/TerritorioAlemania
CiudadBerlin
Período6/09/169/09/16

Huella

Profundice en los temas de investigación de 'Intelligent occupancy-driven thermostat by dynamic user profiling'. En conjunto forman una huella única.

Citar esto