Hepatic Steatosis detection using the co-occurrence matrix in tomography and ultrasound images

Elymar C. Rivas, Franklin Moreno, Alimar Benitez, Villie Morocho, Pablo Vanegas, Ruben Medina

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

12 Citas (Scopus)

Resumen

Hepatic Steatosis (HS) or Fatty Liver is a disease due to fat accumulation within hepatocytes. This disease requires treatment to avoid clinical complications such as hepatic inflammation, fibrosis and finally chronic hepatic damage and hepatic carcinoma. An algorithm for performing the manual segmentation was used. A polygon is traced for representing the region of interest in tomography (CT) images as well as in Ultrasound (US) images. These regions are then subdivided in a set of windows of size 4×4. For each of the windows the co-occurrence matrix is estimated as well as several descriptive statistical parameters. From these matrices, 9 descriptive statistical parameters were estimated. A Binary Logistic Regression (BLR) model was fitted considering as dependent variable the presence or absence of the disease and the descriptive statistical parameters as predictor variables. The model attains classification results of HS with a sensibility of 95.45% in US images and 93.75% in CT images in the venous phase.

Idioma originalInglés
Título de la publicación alojada2015 20th Symposium on Signal Processing, Images and Computer Vision, STSIVA 2015 - Conference Proceedings
EditoresPedro Vizcaya Guarin, Lorena Garcia Posada
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781467394611
DOI
EstadoPublicada - 16 nov. 2015
Evento20th Symposium on Signal Processing, Images and Computer Vision, STSIVA 2015 - Bogota, Colombia
Duración: 2 sep. 20154 sep. 2015

Serie de la publicación

Nombre2015 20th Symposium on Signal Processing, Images and Computer Vision, STSIVA 2015 - Conference Proceedings

Conferencia

Conferencia20th Symposium on Signal Processing, Images and Computer Vision, STSIVA 2015
País/TerritorioColombia
CiudadBogota
Período2/09/154/09/15

Huella

Profundice en los temas de investigación de 'Hepatic Steatosis detection using the co-occurrence matrix in tomography and ultrasound images'. En conjunto forman una huella única.

Citar esto