Forecasting techniques for power systems with renewables

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

Resumen

This chapter conducts a comprehensive analysis of renewable energy generation prediction methods, ranging from classical to contemporary approaches. Fundamental concepts of forecasting are explored, and traditional techniques, as well as meteorological models, are examined. Additionally, a deep dive into the use of machine learning and neural networks for accurately anticipating renewable energy production is presented. The review highlights the effectiveness and limitations of each method, providing a comprehensive insight into the current state of the field. The existing challenges are identified, such as the adaptability of traditional methods to the evolving energy landscape and the optimization of accuracy in meteorological models. Furthermore, the need for computational resources in machine learning approaches is addressed. Based on this analysis, future research directions are proposed. These include enhancing the adaptability of traditional methods, optimizing accuracy in meteorological models, and exploring more resource-efficient approaches in terms of computational resources. This chapter serves as a valuable guide for researchers interested in addressing current challenges and advancing the prediction of renewable energy generation.
Idioma originalInglés
Título de la publicación alojadaTowards Future Smart Power Systems with High Penetration of Renewables
Subtítulo de la publicación alojadaEmerging Technologies, New Tools, and Case Studies
EditoresMarcos Tostado-Véliz, Ahmad Rezaee Jordehi, Seyed Amir Mansouri, Andrés Ramos Galán, Francisco Jurado Melguizo
EditorialElsevier
Capítulo16
Páginas381-412
Número de páginas32
ISBN (versión digital)9780443298714
ISBN (versión impresa)9780443298714
DOI
EstadoPublicada - 1 ene. 2025

Serie de la publicación

NombreTowards Future Smart Power Systems with High Penetration of Renewables

Palabras clave

  • Forecasting methods
  • Machine learning
  • Meteorological models
  • Neural networks
  • Renewable energy prediction

Huella

Profundice en los temas de investigación de 'Forecasting techniques for power systems with renewables'. En conjunto forman una huella única.

Citar esto