Resumen

This paper proposes an innovative approach to address the challenge of semantic interpretation of principal components generated by the widely used Principal Component Analysis (PCA) on complex datasets. We propose a novel method that incorporates large language models (LLM) into the interpretation process. This approach aims to bridge the gap between the statistical complexity of PCA and the practical applicability of latent variables. Our initial results demonstrate the effectiveness and promising precision that this approach can achieve in translating complex mathematical relationships into contextually rich semantic interpretation. This work represents a significant step towards improving interpretability in data science, and a valuable resource to facilitate informed decision making and understanding in diverse research and data analysis contexts.

Idioma originalInglés
Título de la publicación alojadaSmart Technologies, Systems and Applications - 4th International Conference, SmartTech-IC 2024, Revised Selected Papers
EditoresFabián R. Narváez, Micaela N. Villa, Gloria M. Díaz
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas306-321
Número de páginas16
ISBN (versión impresa)9783031982866
DOI
EstadoPublicada - 2026
Evento4th International Conference on Smart Technologies, Systems and Applications, SmartTech-IC 2024 - Quito, Ecuador
Duración: 2 dic. 20244 dic. 2024

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen2392 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia4th International Conference on Smart Technologies, Systems and Applications, SmartTech-IC 2024
País/TerritorioEcuador
CiudadQuito
Período2/12/244/12/24

Huella

Profundice en los temas de investigación de 'Exploring New Horizons on the Interpretation of PCA Using LLM for Data Analysis'. En conjunto forman una huella única.

Citar esto