Exploring energy minimization to model strain localization as a strong discontinuity using Physics Informed Neural Networks

Omar León (Primer Autor), Víctor Rivera, Angel Oswaldo Vazquez Patiño (Autor de Correspondencia), Jacinto Ulloa

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

We explore the possibilities of using energy minimization for the numerical modeling of strain localization in solids as a sharp discontinuity in the displacement field. For this purpose, we consider (regularized) strong discontinuity kinematics in elastoplastic solids. The corresponding mathematical model is discretized using Artificial Neural Networks (ANNs), aiming to predict both the magnitude and location of the displacement jump from energy minimization, i.e., within a variational setting. The architecture takes care of the kinematics, while the loss function takes care of the variational statement of the boundary value problem. The main idea behind this approach is to solve both the equilibrium problem and the location of the localization band by means of trainable parameters in the ANN. As a proof of concept, we show through both 1D and 2D numerical examples that the computational modeling of strain localization for elastoplastic solids using energy minimization is feasible.
Idioma originalInglés
Número de artículo117724
Páginas (desde-hasta)1-18
Número de páginas18
PublicaciónComputer Methods in Applied Mechanics and Engineering
Volumen436
DOI
EstadoPublicada - ene. 2025

Palabras clave

  • Energy minimization
  • Physics informed neural networks
  • Variational methods
  • Strain localization
  • Strong discontinuities
  • Plasticity

Huella

Profundice en los temas de investigación de 'Exploring energy minimization to model strain localization as a strong discontinuity using Physics Informed Neural Networks'. En conjunto forman una huella única.

Citar esto