Exploratory Study of Physic Informed Deep Learning Applied to a Step-Pool for Different Flow Magnitudes

Sebastián Cedillo, Esteban Sánchez-Cordero, Esteban Samaniego, Andrés Alvarado

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Physical laws governing a certain phenomenon can be included in a deep-learning model within a new paradigm: the so-called physical informed deep learning (PIDL). Physical laws in hydraulics consist of partial differential equations (PDEs) resulting from balance laws. The potential use of PIDL in a step-pool reach having a complex flow and geometric characteristics is tested in this article. The studied morphology belongs to a hydraulic observatory in a mountain river in Ecuador where flow and geometric data are available. The water level profile of PIDL was compared to a stationary one-dimensional HEC-RAS model and water levels measured at three staff gauges in the reach. Saint–Venant equations, geometry data, and boundary conditions were used to implement a PIDL-based model. The chosen PIDL architecture is based on the one with the lowest value for the loss function. The resulting water level profile of the PIDL model does not have instabilities, and according to dimensionless RMSE is slightly less efficient in its predictions than the HEC RAS model. Moreover, the difference between HEC-RAS and PIDL water profile decreases as flow increases.

Idioma originalInglés
Título de la publicación alojadaCommunication, Smart Technologies and Innovation for Society - Proceedings of CITIS 2021
EditoresÁlvaro Rocha, Paulo Carlos López-López, Juan Pablo Salgado-Guerrero
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas275-284
Número de páginas10
ISBN (versión impresa)9789811641251
DOI
EstadoPublicada - 2022
Evento7th International Conference on Science, Technology and Innovation for Society, CITIS 2021 - Virtual, Online
Duración: 26 may. 202128 may. 2021

Serie de la publicación

NombreSmart Innovation, Systems and Technologies
Volumen252
ISSN (versión impresa)2190-3018
ISSN (versión digital)2190-3026

Conferencia

Conferencia7th International Conference on Science, Technology and Innovation for Society, CITIS 2021
CiudadVirtual, Online
Período26/05/2128/05/21

Huella

Profundice en los temas de investigación de 'Exploratory Study of Physic Informed Deep Learning Applied to a Step-Pool for Different Flow Magnitudes'. En conjunto forman una huella única.

Citar esto