Evaluating the mindwave headset for automatic upper body motion classification

Edisson Naula, Andres F. Garcia, Kenneth Palacio-Baus, Luis I. Minchala, Andres Vazquez-Rodas, Darwin Astudillo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

This paper presents preliminary results on evaluating the NeuroSky Mindwave headset for upper body motion intention classification. An artificial neural network (ANN) is trained by using a data set built for two different feature extraction methods, one based on the wavelet transform (WT) and another based on the use of spectrograms. Since there are five different types of brain waves,(α, β, γ, Δ, θ) some data aggregation procedures are proposed to reduce the dimensionality of the data set. The classification results show that it is possible to attain a 73.1% of assertion rate.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2017 International Conference on Information Systems and Computer Science, INCISCOS 2017
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas166-173
Número de páginas8
ISBN (versión digital)9781538626443
DOI
EstadoPublicada - 2 jul. 2017
Evento2nd International Conference on Information Systems and Computer Science, INCISCOS 2017 - Quito, Ecuador
Duración: 23 nov. 201725 nov. 2017

Serie de la publicación

NombreProceedings - 2017 International Conference on Information Systems and Computer Science, INCISCOS 2017
Volumen2017-November

Conferencia

Conferencia2nd International Conference on Information Systems and Computer Science, INCISCOS 2017
País/TerritorioEcuador
CiudadQuito
Período23/11/1725/11/17

Huella

Profundice en los temas de investigación de 'Evaluating the mindwave headset for automatic upper body motion classification'. En conjunto forman una huella única.

Citar esto