Enhancing Peak Runoff Forecasting through Feature Engineering Applied to X-Band Radar Data

Julio Joaquín Álvarez Estrella (Primer Autor), Julio Joaquín Álvarez Estrella (Autor de Correspondencia), Paul Muñoz, Jörg Bendix, Pablo Contreras, Rolando Enrique Celleri Alvear (Último Autor)

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

Floods cause significant damage to human life, infrastructure, agriculture, and the economy. Predicting peak runoffs is crucial for hazard assessment, but it is challenging in remote areas like the Andes due to limited hydrometeorological data. We utilized a 300 km2 catchment over the period 2015–2021 to develop runoff forecasting models exploiting precipitation information retrieved from an X-band weather radar. For the modeling task, we employed the Random Forest (RF) algorithm in combination with a Feature Engineering (FE) strategy applied to the radar data. The FE strategy is based on an object-based approach, which derives precipitation characteristics from radar data. These characteristics served as inputs for the models, distinguishing them as “enhanced models” compared to “referential models” that incorporate precipitation estimates from all available pixels (1210) for each hour. From 29 identified events, enhanced models achieved Nash-Sutcliffe efficiency (NSE) values ranging from 0.94 to 0.50 for lead times between 1 and 6 h. A comparative analysis between the enhanced and referential models revealed a remarkable 23% increase in NSE-values at the 3 h lead time, which marks the peak improvement. The enhanced models integrated new data into the RF models, resulting in a more accurate representation of precipitation and its temporal transformation into runoff.
Idioma originalInglés
Número de artículo968
Páginas (desde-hasta)1-19
Número de páginas19
PublicaciónWater (Switzerland)
Volumen16
N.º7
DOI
EstadoPublicada - abr. 2024

Palabras clave

  • Andes
  • Peak runoff forecast
  • X-band radar

Huella

Profundice en los temas de investigación de 'Enhancing Peak Runoff Forecasting through Feature Engineering Applied to X-Band Radar Data'. En conjunto forman una huella única.

Citar esto