TY - GEN
T1 - Comparative study of solar assisted cooling technologies for two different climates
AU - Montero, Andrés
AU - Naranjo-Mendoza, Carlos
AU - López-Villada, Jesús
AU - Labus, Jerko
N1 - Publisher Copyright:
Copyright © 2014 by ASME.
PY - 2014
Y1 - 2014
N2 - This study describes the influence of climate conditions and different solar assisted absorption technologies on the energy performance of air-conditioning systems. The correlation between dynamic cooling load profile and the performance of various solar assisted absorption system configurations was analyzed for two different climates: a hotsummer Mediterranean climate (Seville, Spain) and a tropical savannah climate (Guayaquil, Ecuador). A generic two-story office building was selected as a case study. The building fabrics are set to comply with the best practices of the two countries and the building counts with a useful area of 1152 m2 for the solar system installation. The hourly cooling demand for the building was calculated by using a simplified calculation method based on degree-days with variable base temperature. Three different solar assisted absorption configurations were simulated in TRNSYS software environment based on three types of solar collectors: evacuated tube collectors, parabolic trough collectors and linear Fresnel collectors (microconcentrator type). The first configuration which involves evacuated tube collectors was coupled to a single-effect H2O-LiBr absorption chiller, while the other two configurations include double-effect H2O-LiBr absorption chiller. Models of two different absorption chillers were developed based on the characteristic equation method (ΔΔt). The comparison between the configurations was based on the primary energy analysis and CO2 emission.
AB - This study describes the influence of climate conditions and different solar assisted absorption technologies on the energy performance of air-conditioning systems. The correlation between dynamic cooling load profile and the performance of various solar assisted absorption system configurations was analyzed for two different climates: a hotsummer Mediterranean climate (Seville, Spain) and a tropical savannah climate (Guayaquil, Ecuador). A generic two-story office building was selected as a case study. The building fabrics are set to comply with the best practices of the two countries and the building counts with a useful area of 1152 m2 for the solar system installation. The hourly cooling demand for the building was calculated by using a simplified calculation method based on degree-days with variable base temperature. Three different solar assisted absorption configurations were simulated in TRNSYS software environment based on three types of solar collectors: evacuated tube collectors, parabolic trough collectors and linear Fresnel collectors (microconcentrator type). The first configuration which involves evacuated tube collectors was coupled to a single-effect H2O-LiBr absorption chiller, while the other two configurations include double-effect H2O-LiBr absorption chiller. Models of two different absorption chillers were developed based on the characteristic equation method (ΔΔt). The comparison between the configurations was based on the primary energy analysis and CO2 emission.
UR - https://www.scopus.com/pages/publications/84912569621
U2 - 10.1115/ES2014-6687
DO - 10.1115/ES2014-6687
M3 - Contribución a la conferencia
AN - SCOPUS:84912569621
T3 - ASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
BT - ASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
PB - Web Portal ASME (American Society of Mechanical Engineers)
T2 - ASME 2014 8th International Conference on Energy Sustainability, ES 2014 Collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
Y2 - 30 June 2014 through 2 July 2014
ER -