Assessment of Supply Chain Performance in an Assembly Company: Evaluation of Evolutionary Algorithms

Josselin Orellana, Mario Peña, Juan Llivisaca

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

In current globalized markets, companies no longer compete with each other. They now compete with the supply chains (SC) to which they belong. SC optimization allows efficient and effective management of resources. In many cases, optimization goals can conflict with one another. Therefore, the purpose of this work was to evaluate SC performance by comparing three optimization algorithms in a case study with multiple objectives. Two objectives are maximizing profit and maximizing the level of customer service. Also, the modeled problem considers multiple products and periods for two security inventory scenarios (maximum and minimum inventory levels). Evolutionary algorithms were compared: NSGA-II, MOPSO, and MOMA. The NSGA-II algorithm obtained the best result. With a minimum inventory level, NSGA-II presented 97.87% service level and the best benefit. Results show the importance of SC management and its optimization as well as some relevant variables to be considered.

Idioma originalInglés
Título de la publicación alojadaAdvances and Applications in Computer Science, Electronics and Industrial Engineering - Proceedings of CSEI 2020
EditoresMarcelo V. García, Félix Fernández-Peña, Carlos Gordón-Gallegos
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas167-183
Número de páginas17
ISBN (versión impresa)9789813345645
DOI
EstadoPublicada - 2021
EventoInternational Conference on Computer Science, Electronics and Industrial Engineering, CSEI 2020 - Ambato, Ecuador
Duración: 26 oct. 202030 oct. 2020

Serie de la publicación

NombreAdvances in Intelligent Systems and Computing
Volumen1307 AISC
ISSN (versión impresa)2194-5357
ISSN (versión digital)2194-5365

Conferencia

ConferenciaInternational Conference on Computer Science, Electronics and Industrial Engineering, CSEI 2020
País/TerritorioEcuador
CiudadAmbato
Período26/10/2030/10/20

Huella

Profundice en los temas de investigación de 'Assessment of Supply Chain Performance in an Assembly Company: Evaluation of Evolutionary Algorithms'. En conjunto forman una huella única.

Citar esto