Artificial Intelligence to the Rescue of the Ecuadorian Amazon: Monitoring Changes with Deep Learning

Hernán José Coronel Ramón (Primer Autor), Kevin Fernando Juela Cabrera, Víctor Hugo Saquicela Galarza, Natalie Aubet, Rosa Lucía Lupercio Novillo (Último Autor)

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Despite the importance of the Amazon region due to its biodiversity, ecosystem services and its enormous contribution to reduce global warming, this region is currently facing critical threats and challenges such as deforestation, urban and agricultural expansion, massive forest fires, illegal/non-regulated mining, among others. Given its vast extension, timely monitoring aimed to mitigate these problems represents a complex task. The lack of adequate tools has hindered environmental monitoring and management in this region, highlighting the need to develop advanced techniques to address these issues. This study focuses on the implementation of methods to detect and classify land cover changes, using an portion of the Ecuadorian Amazon as a case study. Our proposed method combines spectral vegetation indices generated from Sentinel-2 satellite image and deep learning techniques. Multitemporal images have been collected and preprocessed, applying the Bitemporal Adapter Network (BAN) for change detection and ResNet152V2 for land cover classification. The BAN is then re-trained with a specific dataset for the Ecuadorian Amazon. Results attain a good level of accuracy (99.36 unchanged and 89.6 changed) showing that these techniques are effective not only for detecting changes, but also for classifying affected land cover types. These findings provide valuable information for the implementation of conservation and management policies in the Ecuadorian Amazon.
Idioma originalInglés
Título de la publicación alojadaProceedings of the 2025 28th International Conference on Information Fusion, FUSION 2025
Lugar de publicaciónRio de Janeiro, Brasil
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1-7
Número de páginas7
ISBN (versión digital)978-1-0370-5623-9
ISBN (versión impresa)979-8-3315-0350-5
DOI
EstadoPublicada - 2025
Evento28th International Conference on Information Fusion, FUSION 2025 - Rio de Janiero, Brasil
Duración: 7 jul. 202511 jul. 2025

Conferencia

Conferencia28th International Conference on Information Fusion, FUSION 2025
País/TerritorioBrasil
CiudadRio de Janiero
Período7/07/2511/07/25

Palabras clave

  • Change detection
  • Deep learning
  • NDVI
  • Sentinel-2
  • Vegetation Index

Huella

Profundice en los temas de investigación de 'Artificial Intelligence to the Rescue of the Ecuadorian Amazon: Monitoring Changes with Deep Learning'. En conjunto forman una huella única.

Citar esto