Applying Machine Learning Techniques to the Analysis and Prediction of Financial Data

Pablo Flores-Siguenza, Darío Espinoza-Saquicela, Marlon Moscoso-Martínez, Lorena Siguenza-Guzman

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Data analysis and processing allow for acquiring competitive advantages both in the business and academic and research worlds. One of the sciences that carries out this analysis is machine learning, which has evolved with greater emphasis in recent years due to its advantages and applicability in different areas. Aware of the importance and current relevance of data management for industries, especially in the banking sector, this study applies supervised learning techniques to generate classification and prediction models by treating a set of data from an Ecuadorian financial institution. Different algorithms are compared, and each of the steps to follow in constructing the models is explained in detail. This allows the financial entity to classify its clients as VIPs or not with greater certainty, as well as to predict the investment amounts of the potential clients based on variables such as age, occupation, and among others. The main results show that the K-nearest neighbor algorithm with k = 5 is optimal for classification, while for prediction, the multilayer perceptron algorithm is the most favorable.

Idioma originalInglés
Título de la publicación alojadaProceedings of 8th International Congress on Information and Communication Technology - ICICT 2023
EditoresXin-She Yang, R. Simon Sherratt, Nilanjan Dey, Amit Joshi
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas843-853
Número de páginas11
ISBN (versión impresa)9789819930906
DOI
EstadoPublicada - 2023
Evento8th International Congress on Information and Communication Technology, ICICT 2023 - London, Reino Unido
Duración: 20 feb. 202323 feb. 2023

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen694 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

Conferencia8th International Congress on Information and Communication Technology, ICICT 2023
País/TerritorioReino Unido
CiudadLondon
Período20/02/2323/02/23

Huella

Profundice en los temas de investigación de 'Applying Machine Learning Techniques to the Analysis and Prediction of Financial Data'. En conjunto forman una huella única.

Citar esto