Advancing timely satellite precipitation for IMERG-ER using GOES-16 data and a U-net convolutional neural network modelling approach

Mateo Vélez-Hernández, Paul Muñoz, Esteban Samaniego, María José Merizalde, Rolando Célleri

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Timely precipitation information is essential for water resources management and hazard monitoring. In regions with limited ground-based measurements, satellite precipitation products (SPPs) provide a valuable alternative, though data latency often creates an information gap for real-time applications. This study addresses the latency gap of IMERG-ER using a U-Net-based Convolutional Neural Network (CNN) model, trained with near-instantaneous GOES-16 satellite data. The optimal combination of GOES-16 infrared bands (6.2, 6.9, 7.3, 8.4, and 11.2 μm) was determined to enhance IMERG-ER predictions. The CNN model's performance, evaluated with both quantitative and qualitative metrics, showed an RMSE of 0.46 mm/h, a Pearson's correlation coefficient of 0.60, and a Critical Success Index of 0.53. The model performed well in predicting low-intensity precipitation (<3 mm/h), which occurs 97 % of the time, but faced challenges with high-intensity events due to data imbalance. These findings advance the use of SPPs and deep learning for operational hydrology.

Idioma originalInglés
Número de artículo106457
PublicaciónEnvironmental Modelling and Software
Volumen189
DOI
EstadoPublicada - ene. 2025

Huella

Profundice en los temas de investigación de 'Advancing timely satellite precipitation for IMERG-ER using GOES-16 data and a U-net convolutional neural network modelling approach'. En conjunto forman una huella única.

Citar esto