Resumen

The Transmission Network Expansion Planning (TNEP) is a complex optimization problem. Metaheuristic techniques and mathematical methods are currently used to obtain reliable results for linearized or simplified TNEP formulations. However, solving the TNEP problem using the full AC equations remains an issue. The use of machine learning in the context of power systems optimization has increased in recent years. Therefore, this research explores the application of reinforcement learning to solve the AC TNEP problem, framing it as an episodic decision-making process where each episode represents a distinct planning scenario. The results obtained for the Garver 6-bus system show that it is a viable method.

Idioma originalInglés
Título de la publicación alojada2025 IEEE Kiel PowerTech, PowerTech 2025
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798331543976
ISBN (versión impresa)9798331543976
DOI
EstadoPublicada - 6 oct. 2025

Serie de la publicación

Nombre2025 IEEE Kiel PowerTech, PowerTech 2025

Huella

Profundice en los temas de investigación de 'AC Transmission System Expansion Planning using a Q-learning Algorithm'. En conjunto forman una huella única.

Citar esto