A Novel Electronic Chip Detection Method Using Deep Neural Networks

Huiyan Zhang, Hao Sun, Peng Shi, Luis Ismael Minchala, Huiyan Zhang (Primer Autor)

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

Electronic chip detection is widely used in electronic industries. However, most existing detection methods cannot handle chip images with multiple classes of chips or complex backgrounds, which are common in real applications. To address these problems, a novel chip detection method that combines attentional feature fusion (AFF) and cosine nonlocal attention (CNLA), is proposed, and it consists of three parts: a feature extraction module, a region proposal module, and a detection module. The feature extraction module combines an AFF-embedded CNLA module and a pyramid feature module to extract features from chip images. The detection module enhances feature maps with a region intermediate feature map by spatial attentional block, fuses multiple feature maps with a multiscale region of the fusion block of interest, and classifies and regresses objects in images with two branches of fully connected layers. Experimental results on a medium-scale dataset comprising 367 images show that our proposed method achieved mAP0.5 = 0.98745 and outperformed the benchmark method.

Idioma originalInglés
Número de artículo361
PublicaciónMachines
Volumen10
N.º5
DOI
EstadoPublicada - may. 2022

Huella

Profundice en los temas de investigación de 'A Novel Electronic Chip Detection Method Using Deep Neural Networks'. En conjunto forman una huella única.

Citar esto