TY - JOUR
T1 - A Novel Electronic Chip Detection Method Using Deep Neural Networks
AU - Zhang, Huiyan
AU - Sun, Hao
AU - Shi, Peng
AU - Minchala, Luis Ismael
AU - Zhang, Huiyan
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5
Y1 - 2022/5
N2 - Electronic chip detection is widely used in electronic industries. However, most existing detection methods cannot handle chip images with multiple classes of chips or complex backgrounds, which are common in real applications. To address these problems, a novel chip detection method that combines attentional feature fusion (AFF) and cosine nonlocal attention (CNLA), is proposed, and it consists of three parts: a feature extraction module, a region proposal module, and a detection module. The feature extraction module combines an AFF-embedded CNLA module and a pyramid feature module to extract features from chip images. The detection module enhances feature maps with a region intermediate feature map by spatial attentional block, fuses multiple feature maps with a multiscale region of the fusion block of interest, and classifies and regresses objects in images with two branches of fully connected layers. Experimental results on a medium-scale dataset comprising 367 images show that our proposed method achieved mAP0.5 = 0.98745 and outperformed the benchmark method.
AB - Electronic chip detection is widely used in electronic industries. However, most existing detection methods cannot handle chip images with multiple classes of chips or complex backgrounds, which are common in real applications. To address these problems, a novel chip detection method that combines attentional feature fusion (AFF) and cosine nonlocal attention (CNLA), is proposed, and it consists of three parts: a feature extraction module, a region proposal module, and a detection module. The feature extraction module combines an AFF-embedded CNLA module and a pyramid feature module to extract features from chip images. The detection module enhances feature maps with a region intermediate feature map by spatial attentional block, fuses multiple feature maps with a multiscale region of the fusion block of interest, and classifies and regresses objects in images with two branches of fully connected layers. Experimental results on a medium-scale dataset comprising 367 images show that our proposed method achieved mAP0.5 = 0.98745 and outperformed the benchmark method.
KW - deep learning
KW - electronic chip detection
KW - feature pyramid network
UR - https://www.scopus.com/pages/publications/85130417833
U2 - 10.3390/machines10050361
DO - 10.3390/machines10050361
M3 - Artículo
AN - SCOPUS:85130417833
SN - 2075-1702
VL - 10
JO - Machines
JF - Machines
IS - 5
M1 - 361
ER -