A Machine Learning Approach for Blood Glucose Level Prediction Using a LSTM Network

Nayeli Y. Gómez-Castillo, Pedro E. Cajilima-Cardenaz, Luis Zhinin-Vera, Belén Maldonado-Cuascota, Diana León Domínguez, Gabriela Pineda-Molina, Andrés A. Hidalgo-Parra, Fernando A. Gonzales-Zubiate

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

7 Citas (Scopus)

Resumen

Diabetes is a chronic disease characterized by the elevation of glucose in blood resulting in multiple organ failure in the body. There are three types of diabetes: type 1, type 2, and gestational diabetes. Type 1 diabetes (T1D) is an autoimmune disease where insulin-producing cells are destroyed. World Health Organization latest reports indicate T1D prevalence is increasing worldwide with approximately one million new cases annually. Consequently, numerous models to predict blood glucose levels have been proposed, some of which are based on Recurrent Neural Networks (RNNs). The study presented here proposes the training of a machine learning model to predict future glucose levels with high precision using the OhioT1DM database and a Long Short-Term Memory (LSTM) network. Three variations of the dataset were used; the first one with original unprocessed data, another processed with linear interpolation, and a last one processed with a time series method. The datasets obtained were split into time prediction horizons (PH) of 5, 30, and 60 min and then fed into the proposed model. From the three variations of datasets, the one processed with time series obtained the highest prediction accuracy, followed by the one processed with linear interpolation. This study will open new ways for addressing healthcare issues related to glucose forecasting in diabetic patients, helping to avoid concomitant complications such as severe episodes of hyperglycemia.

Idioma originalInglés
Título de la publicación alojadaSmart Technologies, Systems and Applications - 2nd International Conference, SmartTech-IC 2021, Revised Selected Papers
EditoresFabián R. Narváez, Julio Proaño, Paulina Morillo, Diego Vallejo, Daniel González Montoya, Gloria M. Díaz
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas99-113
Número de páginas15
ISBN (versión impresa)9783030991692
DOI
EstadoPublicada - 2022
Publicado de forma externa
Evento2nd International Conference on Smart Technologies, Systems and Applications, SmartTech-IC 2021 - Quito, Ecuador
Duración: 1 dic. 20213 dic. 2021

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1532 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia2nd International Conference on Smart Technologies, Systems and Applications, SmartTech-IC 2021
País/TerritorioEcuador
CiudadQuito
Período1/12/213/12/21

Huella

Profundice en los temas de investigación de 'A Machine Learning Approach for Blood Glucose Level Prediction Using a LSTM Network'. En conjunto forman una huella única.

Citar esto