A Comprehensive Solution for Electrical Energy Demand Prediction Based on Auto-Regressive Models

Juan José Sáenz-Peñafiel, Jorge E. Luzuriaga, Lenin Guillermo Lemus-Zuñiga, Vanessa Solis-Cabrera

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Energy consumption and demand are two widely used terms necessary to understand the functioning of the different mechanisms used in electrical energy transactions. In this article, the design and construction of a comprehensive solution to forecast future trends in electricity transactions using the historical data and two auto-regressive models were considered. Simple linear regression and a complete model such as ARIMA. We compared these models to find which one best suits the type of data considering their strengths and weaknesses for this specific case. Finally, to complete the comprehensive solution, the results are presented to the final user. This solution is mainly aimed at professionals who carry out activities related to contracting and managing electricity supply in public institutions. This solution pretends to collaborate to reduce energy demand and therefore, consumption.

Idioma originalInglés
Título de la publicación alojadaSystems and Information Sciences - Proceedings of ICCIS 2020
EditoresMiguel Botto-Tobar, Willian Zamora, Johnny Larrea Plúa, José Bazurto Roldan, Alex Santamaría Philco
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas443-454
Número de páginas12
ISBN (versión impresa)9783030591939
DOI
EstadoPublicada - 2021
Evento1st International Conference on Systems and Information Sciences, ICCIS 2020 - Manta, Ecuador
Duración: 27 jul. 202029 jul. 2020

Serie de la publicación

NombreAdvances in Intelligent Systems and Computing
Volumen1273 AISC
ISSN (versión impresa)2194-5357
ISSN (versión digital)2194-5365

Conferencia

Conferencia1st International Conference on Systems and Information Sciences, ICCIS 2020
País/TerritorioEcuador
CiudadManta
Período27/07/2029/07/20

Huella

Profundice en los temas de investigación de 'A Comprehensive Solution for Electrical Energy Demand Prediction Based on Auto-Regressive Models'. En conjunto forman una huella única.

Citar esto