A Comparative Study on Time Series Prediction of Photovoltaic-Power Production Through Classic Statistical Techniques and Short-Term Memory Networks

Juan F. Duran, Luis I. Minchala

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

The inherent variability in the power production of renewable energy sources (RES) limits the effectiveness of energy management systems (EMS) since optimal dispatch on power networks highly depends on the accuracy of predictors associated with the energy output and load demand. Consequently, power prediction tools for variable time horizons allow for improving energy management decisions. In this context, this work presents a detailed methodology for the deployment of predictive models for the photovoltaic (PV) power output of a small solar farm. The prediction models process a PV power dataset's time series using statistical techniques and neural networks with long-short term memory (LSTM). Before the data fitting, we develop a data preprocessing system, which involves evaluating missing data in the time series and getting descriptive analysis of the data set to either complete portions or delete atypical data. The results strongly suggest that the LSTM network performs better than the statistical model in exchange for more considerable computation times for long-term predictions.

Idioma originalInglés
Título de la publicación alojada9th 2023 International Conference on Control, Decision and Information Technologies, CoDIT 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1512-1517
Número de páginas6
ISBN (versión digital)9798350311402
DOI
EstadoPublicada - 2023
Evento9th International Conference on Control, Decision and Information Technologies, CoDIT 2023 - Rome, Italia
Duración: 3 jul. 20236 jul. 2023

Serie de la publicación

Nombre9th 2023 International Conference on Control, Decision and Information Technologies, CoDIT 2023

Conferencia

Conferencia9th International Conference on Control, Decision and Information Technologies, CoDIT 2023
País/TerritorioItalia
CiudadRome
Período3/07/236/07/23

Huella

Profundice en los temas de investigación de 'A Comparative Study on Time Series Prediction of Photovoltaic-Power Production Through Classic Statistical Techniques and Short-Term Memory Networks'. En conjunto forman una huella única.

Citar esto